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Abstract

Generalized zero-shot learning (GZSL) models,
trained on images from seen classes, are targeted
to classify new images from both the seen and
unseen classes. Previous works take the original
semantic description as the input without further
exploring its intrinsic information, which may hin-
der the knowledge transfer from the seen classes
to the unseen classes. To facilitate knowledge
transfer, a new approach is proposed in this pa-
per to view the GZSL as a multilabel classifi-
cation task. The labels, obtained from seman-
tic attributes, are the similarities between seen
and unseen classes. The proposed attribute atten-
tion module in our network is capable of extract-
ing and enhancing the discriminative parts of im-
age features. Moreover, two loss functions with
pseudo data generation are implemented in the
network to balance the transferability and the dis-
criminability. Comprehensive evaluations show
that the proposed approach outperforms the state-
of-the-art methods in three datasets, APY, AWA2
and SUN, in the GZSL setting.

1. Introduction
Convolutional neural network (CNN) have achieved rev-
olutionary successes in image classification. Most of the
CNN based methods rely on abundant labeled training data,
e.g. ImageNet (He et al., 2016), and can only recognize
the objects whose categories are included in the training
dataset. However, obtaining massive training data of all
the categories is unfeasible. Therefore, zero-shot learning
(ZSL) that aims to train a model to recognize the object that
has no relevant training data becomes an attractive topic.

The ZSL model is targeted to recognize images belonging to
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novel categories that have not appeared in the training stage.
In ZSL, the ability to recognize unseen category images is
generally obtained by transferring knowledge learned from
seen classes to unseen classes, which is accomplished with
the help of semantic descriptions. The ZSL setting is based
on the assumption that the input images only come from
unseen classes in the test stage, which may not be feasi-
ble in some practical applications. Therefore, the model
should have the ability to classify images from seen and
unseen classes, which is called generalized zero-shot learn-
ing (GZSL). The search space of GZSL is expanded to all
the seen and unseen classes. GZSL models typically suffer
from the domain shift problem (Fu et al., 2014) due to the
distributional differences between seen and unseen classes.
As pointed out in (Chao et al., 2016), because of the imbal-
ance between seen and unseen data, unseen class images
tend to be recognized to belong to seen classes in GZSL set-
ting. In this paper, we propose a new method for knowledge
transfer that can alleviate the bias of classification and solve
the domain shift problem.

In GZSL, the utilization of semantic information is one of
the key points to achieve better knowledge transfer. The
previous work (Xie et al., 2019) focuses on the transforma-
tion from image space to semantic space. The classifica-
tion results are obtained by comparing predicted semantic
attributes with ground truth attributes. The internal infor-
mation in semantic attributes is not fully uncovered, which
may hinder the further improvement of knowledge transfer.
To obtain better transferability, we view GZSL as a multil-
abel classification task and construct labels from the internal
information of semantic description.

The knowledge transfer in our work is accomplished by
utilizing the similarities between different classes. Although
two images belong to different classes, they still share some
common features, and the common features are transferable
between different classes, e.g. the similar tail of cow and
buffalo, the similar color of cheetah and tiger. Therefore,
we use continuous value ranging from 0 to 1 to describe the
similarity of the input image to each class, instead of using
0 and 1 to indicate whether the input belongs to a category
or not. In this way, the proposed network will learn the
common features in different classes, which are then used
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to recognize the images belonging to unseen classes.

Compared with class labels, semantic attributes have abun-
dant information that is sufficient to guide the knowledge
transfer. Semantic attributes are labeled by human experts,
which are the most accurate and reliable knowledge com-
pared to the inexplicit knowledge learned during training.
Therefore, the ground truth similarities between different
classes are constructed from semantic attributes.

The attention mechanism is combined in our work to extract
the discriminative parts of features, aiming to enhance the
discriminability and preserve the independence of recog-
nition between seen and unseen classes. In the majority
of previous works, the semantic descriptions are equally
treated. However, the information in semantic descriptions
can be divided into two categories, the discriminative part
and the non-discriminative part, such as the strip and tail of
zebra. Few previous research combined attention module
in their work (Xie et al., 2019; Liu et al., 2019a). Due to
the complicated network structure and lacking in effective
supervision, training the attention module becomes trouble-
some. A new method of designing the attention module in
ZSL is proposed in our work.

The combined approach, which involves knowledge transfer
and attention mechanism, outperforms the state-of-the-art
methods in GZSL setting. To sum up, our contributions are:

• We view ZSL as a multilabel classification task to
obtain better knowledge transferability.

• We design an attention module that is easy to train to
enhance the discriminability of image features.

• Experiments on four benchmark datasets show the su-
periority of the designed approach in GZSL settings.

2. Related Work
Zero-shot learning aims at training models to recognize
images whose categories have never appeared in the training
dataset. To achieve this, the model are trained to learn the
relation between the training image data and their semantic
descriptions. According to the methods that are used to fuse
the visual information and semantic descriptions, current
ZSL/GZSL approaches can be grouped into the following
two types: 1. Semantic information is directly used to help
the classifier to determine the category of the input image. 2.
Semantic information is used to generate pseudo features of
unseen classes, and the classifier is trained with the pseudo
features to recognize unseen classes.

In the first category, images and semantic information are
projected onto the same space to fuse their information. The
methods proposed in (Fu et al., 2015; Ye & Guo, 2017) both
project the visual features onto semantic space, and classi-

fication scores are measured by the distance between their
semantic embeddings and semantic attributes. However,
there is still a gap between high-dimensional visual features
and low-dimensional semantic attributes, resulting in a loss
of the visual information in the projection. To bridge the
gap, a new latent visual embedding that is visually semantic
is presented in (Zhu et al., 2019). Due to the lack of training
data from unseen classes, this method is prone to classify-
ing unseen class images into seen classes. Instead of only
striving to extract semantic information from input images,
the method in (Sung et al., 2018) projects both visual and
semantic features onto a common intermediate space.

Generative models, e.g. generative adversarial network
(GAN) and conditional variational autoencoder (CVAE), are
widely used to generate pseudo features of unseen classes
in ZSL. The generative model is trained on seen classes to
acquire the distribution of visual representations based on
semantic information. Provided with semantic information
of unseen classes, the pseudo unseen samples can be gen-
erated by the generative model. The classifier is trained
on real seen samples and pseudo unseen samples. (Xian
et al., 2018) used conditional Wasserstein-GAN to synthe-
size CNN features, and the semantic information is used as
the condition. GDAN (Huang et al., 2019), which combines
GAN and dual learning, unifies both visual-semantic and
semantic-visual generation and metric learning to further
improve the performance. To improve the quality of gener-
ated features, (Li et al., 2019) proposed to define multiple
soul samples for each class based on the investigation in the
multi-view nature of different images.

Inspired by the learning process of humans, some research
has been done to study the importance of different parts
of semantic attributes in classifying an image. Attention
mechanism (Xu et al., 2015) has been successfully applied
to various fields. In ZSL, the attention module in (Xie et al.,
2019) separates image features into different parts by the
attention masks generated on image feature. Each part is
responsible for predicting one part of the semantic attribute.
However, there is no guidance on the attention mask genera-
tion, especially with the absence of semantic information.
(Liu et al., 2019a) proposed an attribute attention framework
to weight the attribute, aiming to tackle the semantic am-
biguity problem. The proposed LFGAA network extracts
attention masks from the outputs of the different layers of
feature extractor. We find that these methods rely on a
complicated network and lack in effective supervision with
respect to the various inputs, making it intractable to transfer
knowledge in the training stage.
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Figure 1. The framework of proposed network. The main body consists of a feature extractor, an attention module and a multilabel
classifier. The image feature is weighted by the attention mask generated by the attention module to extract the discriminative parts, which
is then taken as the input of the classifier to predict the similarity to each category.

3. Methodology
3.1. Problem Definition

We start by defining the zero-shot learning (ZSL) and gener-
alized zero-shot learning (GZSL) problem settings. Given
a training dataset Ds = {(xsi , ysi )}

Ns

i=1, where xsi ∈ XS
is the ith data sample, of totally Ns samples, with a cor-
responding seen class label as ysi , here ysi ∈ YS . XS and
YS is the image set and label set of seen classes. The test
dataset is defined in the same way, Du = {(xui , yui )}

Nu

i=1.
There is no overlap between training classes and test classes,
YS ∩ YU = ∅. Different from conventional image classifi-
cation dataset, a semantic description dataset is supplied
as complementary information in ZSL dataset. Seman-
tic description for every class is available in that dataset:
A = {asi}

Cs

i=1

⋃
{aui }

Cu

i=1, where as/ui ∈ Rn is the semantic
vector corresponding to the ith seen/unseen class. The Cs

and Cu are the number of seen and unseen classes, and n is
the dimension of the semantic space. The goal of ZSL is to
learn a classifier fzsl : XU → YU , and the goal of GZSL is
to learn fgzsl : XS ∪ XU → YS ∪ YU .

3.2. Model Overview

For better knowledge transferability, we view ZSL as a
multilabel classification task. As shown in Figure 1, our
model takes an image and all the attribute vectors as input
and outputs classification scores on every class. The output
is interpreted as the similarities of the input image to the
target classes. The attention module generates attention
masks based on the semantic attributes. There are three
components in our model, an image feature extractor, an

attribute attention module, and a multilabel classifier.

As suggested in (Xian et al., 2019), we use ResNet101 as
our feature extractor, of which the parameters will not be
updated during training. The input image feature of the
classifier is denoted as xi ∈ Rd, where d is the dimension of
the image feature. The attribute attention module takes the
attributes of all classes as input, generating attention mask
corresponding to every class. The image feature is weighted
by the attention masks to enhance the discriminative part
corresponding to every class. Then the classifier will predict
the score for each category.

3.3. Attention Module

Other works (Xie et al., 2019; Liu et al., 2019a) also com-
bine the attention mechanism into their work. They extract
attention masks from image features and then weight the
image features or attributes. Due to the complex network
structure and diversity of the input images, it is hard to train
the attention module without effective supervision.

The image feature, which is extracted by a well-trained
network, has a fixed spatial structure. Each dimension of
the feature vector corresponds to some certain information
of the image. The semantic attribute vector is defined in the
same way. Therefore, the attention module that generates
attention masks based on the fixed attributes of all classes is
easier to train. During training, the structure transformation
from semantic attributes to visual features is learned by the
attention module. Then the semantic attributes are projected
onto image feature space as attention masks, which are
expected to augment the discriminative part and suppress
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the non-discriminative part.

We use multilayer perceptrons (MLP) to construct the atten-
tion module, denoted as g(·). We experimented with two
output functions, sigmoid function and ReLU. The sigmoid
function produces weights with values ranging from 0 to 1,
indicating the importance of each dimension. However, the
properties of the sigmoid function severely hinder the train-
ing, resulting in a slower training speed and relatively bad
performance. Therefore, we resort to ReLU. We conducted
experiments to test the effects of ReLU layer, and the exper-
iments show that the weights produced by the ReLU layer
range from 0 to 1, which are suitable for attention mask. The
output attention mask of jth class attribute is g(aj) ∈ Rd
where d is the dimension of the image feature vector. Let
f(·) denote the feature extractor, and the weighted image
features are obtained by:

zi,j = f (xi) ⊗ g(aj) (1)

Where ⊗ is element-wise product operation, zi,j is the im-
age feature weighted by the attention mask of class j. Then
the weighted image features of all classes are concatenated
together and fed to the classifier.

3.4. Multilabel Classifier

Different classes in a ZSL dataset share some common char-
acteristics. Like humans recognizing an unseen category,
the ZSL model transfer knowledge from the seen classes to
the unseen classes to acquire the unseen data distribution.
In the ZSL dataset, though two objects belong to different
categories, they still resemble each other to some degrees.
Therefore, we view GZSL as a multilabel classification task.
The output scores represent how similar the input is to a
certain category.

Let h(·) denote the classifier, which is implemented as a
MLP with a sigmoid output function. The classification
scores, regarded as similarities, of image xi to classes j is
formulated as:

oi,j = h (zi,j) (2)

Instead of taking one feature as input and predicting its
classification score on all classes, the multilabel classifier
takes Cs + Cu weighted features as input and predicts, in
sequence, the probability that the original feature falls into
each category. In this way, the criteria of classifying the
input image are independent of which category the input
belongs to, but only related to the distribution of weighted
feature.

3.5. Knowledge Transfer

We did not focus our efforts on the design of the network
structure, because the image feature extracted by a well-
trained ResNet101 contains enough information for us to

imply our algorithm. Instead, we mainly focus on how to
utilize semantic information to achieve better knowledge
transfer.

3.5.1. CLASS SIMILARITY

The similarities between different classes are used as la-
bels to guide the training. Semantic attributes, labeled by
the human experts, contain abundant information of every
classes. Therefore, the class similarities in our approach are
obtained from semantic attributes. Inspired by (Jiang et al.,
2019), we use the source classes attributes to reconstruct the
target class attribute, and the reconstruction coefficients are
interpreted as the similarity of the target class to the source
classes. The reconstruction is accomplished by Ridge Re-
gression, of which the object function is:

θt = argmin
θt

||at−
ns∑
s=0

θts · as||22 + β||θt||2 (3)

Where as and at are the source and target class attributes, β
is a regularization parameter. The similarity is a normalized
version of θ:

st,s =
max(0, θts)∑ns

i=1 max(0, θti)
(4)

Different from (Jiang et al., 2019), we construct two set of
similarities, which are similarities Sss ∈ RCs,Cs

among
seen classes and similarities Ssu ∈ RCs,Cu

between seen
and unseen classes. Note that, when doing Ridge Regression
to construct Sss, the at is also in the set of {as}. Therefore,
the at is removed and the similarity to itself is set to 1 after
normalization.

3.5.2. LOSS FUNCTION FOR KNOWLEDGE TRANSFER

With the supervision of similarities between seen and unseen
classes, the network learns the unseen feature distribution
by transferring knowledge of seen classes. Given an image
feature as the input to the classifier, the classifier is expected
to produce 1 for its own class. For other class, the output
score should be close to the similarity between them. When
taking an image feature belonging to unseen classes as in-
put in the test stage, the classifier will assign the highest
value to its own class yu based on the knowledge learned
from the similar seen classes. We treat the similarity as the
probability of xi belongs to class yj ,

P (yj |xi) = syi,yj (5)

Let oi,j denote the predicted similarity of input image xi to
target class yj ∈ Y s ∪ Y u. Then the loss function on seen
classes is formulated as:

LTs =−
Ns∑
i=1

Cs∑
j=1

syi,yj log oi,j +
(
1−syi,yj

)
log (1−oi,j)
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The loss function on unseen class formulated as:

LTu=−
Ns∑
i=1

Cs+Cu∑
j=Cs

syi,yj log oi,j+
(
1−syi,yj

)
log (1−oi,j)

Where syi,yj ∈ Sss ∪ Ssu is the ground truth similarity.
In further experiments, we find that a hyperparameter to
balance the transfer loss on seen and unseen classes leads
to a better result. The loss for knowledge transfer is the
weighted sum of them:

LT = LTs + αLTu (6)

3.5.3. LOSS FUNCTION FOR DISCRIMINATIVE
PROPERTY

When doing recognition, the predicted category is that with
the highest similarity value. Since we view it as a multilabel
classification task, the predicted similarity of other classes
will weaken the discrimination ability. Therefore, we add
an auxiliary loss to improve the discriminative property by
maximizing the score of their own class. The auxiliary loss
is formulated as a cross-entropy loss:

LAs = −
Ns∑
i=1

Cs∑
j=1

1(yi, j) · log oi,j

+ (1− 1(yi, j)) log (1− oi,j)

(7)

Where 1 (yi, j) is an indicator function that returns 1 if yi =
j or 0 otherwise. Since the unseen data is unavailable during
training, we can not enhance the discriminative property on
unseen classes by simply duplicating the LAs However,
we do need a counterpart loss on unseen classes because
the loss inconsistency between seen and unseen classes
will confuse the network. Therefore, we use an intuitive
method to generate pseudo unseen data based on the concept
mentioned in the class similarity.

Objects belong to different categories share some common
characteristics. So the unseen class image features can be
generated by synthesizing the seen class image features. We
reconstruct unseen class attributes using seen class attributes
by Eq. 3. The coefficients are used as weights to synthesize
pseudo features, which is formulated as:

xj =

Cs∑
i=1

θj,i ·Random ({xi}) (8)

Where xj is the pseudo image feature belongs to unseen
class j ∈ Y u, and Random ({xi}) is the image feature
chosen randomly from the seen features belonging to class
yi ∈ Y s. The generation will be repeated many times until
there are proportionable pseudo features. Then the auxiliary

loss on unseen data is formulated as:

LAu
= −

Np∑
i=1

Cu+Cs∑
j=1

1(yi, j) · log oi,j

+ (1− 1(yi, j)) log (1− oi,j)

(9)

Taking into account the scores of pseudo features on seen
classes, LAu

will not only increase the discriminative prop-
erty on unseen classes, but also suppresses the scores of
input features belonging to seen classes. Previous works
(Chao et al., 2016; Atzmon & Chechik, 2019) present that
reducing the scores of seen classes can improve the recog-
nition result in GZSL setting. The loss for discriminative
property is the weighted sum of Eq.7 and Eq.9:

LA = LAs
+ βLAu (10)

The magnitudes of the four losses are related to the number
of categories involved in the calculation, and the degree of
impacts they have on the network varies. Therefore, the
final object function is the weighted sum of the four loss
function, which is formulated as:

L = LAs + αLAu + βLTs + γLTu (11)

4. Experiments
4.1. Datasets and Settings

Following the instruction in (Xian et al., 2019), we con-
duct zero-shot and generalized zero-shot recognition exper-
iments on four widely used ZSL datasets: APY(Farhadi
et al., 2009), AWA2(Xian et al., 2019), CUB(Wah et al.,
2011), SUN(Patterson et al., 2014). Specifically, APY is
a small-scale coarse-grained dataset, with 64D attributes
and a total of 15,339 images, and the seen/unseen splits
are 20/12. AWA2 is an extension of AWA1(Lampert et al.,
2009). AWA2 includes 37,322 images of animals from 50
classes, and the seen/unseen splits are 40/10. The semantic
attribute provided in AWA2 is an 85D vector associated with
each class. CUB is a fine-grained and medium-scale dataset,
which contains 200 different types of birds annotated with
312attributes and 11,788 images in total. SUN is a scene
image dataset, consisting of 14,340 images from 717 cat-
egories, with splits of 645/72 for seen/unseen classes. A
102D continuous semantic vector is supplied for each class.

4.2. Implementation Details and Parameters

The survey (Xian et al., 2019) reproduced a variety of
previous methods using the 2048D feature extracted from
ResNet101(He et al., 2016). And following (Xian et al.,
2019), many methods proposed recently use the 2048D fea-
tures as their input. For fair comparison with those published
approaches, we take ResNet101 as our feature extractor.
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Table 1. Generalized zero-shot recognition results on APY, AWA2, CUB and SUN, in %. H is the harmonic mean of the accuracies on
seen and unseen classes. ’/’ denotes that the result is not reported.

METHOD
APY AWA2 CUB SUN

SEEN UNSEEN H SEEN UNSEEN H SEEN UNSEEN H SEEN UNSEEN H

(SUNG ET AL., 2018) / / / 93.4 30.0 45.3 61.4 38.1 47.0 / / /
(VERMA ET AL., 2018) / / / 68.1 58.3 62.8 53.3 41.5 46.7 30.5 40.9 34.9
(ZHU ET AL., 2018) 78.6 14.2 24.0 84.2 35.4 50.3 61.3 31.7 41.8 39.3 22.1 28.3
(LIU ET AL., 2018) 75.0 14.2 23.9 / / / 60.7 28.4 38.7 37.0 22.5 30.2
(LIU ET AL., 2019B) / / / 93.4 27.0 41.9 80.9 36.2 50.0 40.0 18.5 25.3
(CACHEUX ET AL., 2019) / / / 83.2 48.5 61.3 55.8 52.3 53.0 30.4 47.9 36.8
(XIAN ET AL., 2018) / / / / / / 57.7 43.7 49.7 36.6 42.6 39.4
(JIANG ET AL., 2019) 64.0 24.1 35.1 65.8 61.2 63.4 52.6 52.0 52.3 37.3 31.2 34.0

OURS 57.7 32.5 41.5 70.6 63.2 66.7 52.1 52.8 52.5 34.1 47.5 39.7

Table 2. Zero-shot recognition results on APY, AWA2, CUB, and
SUN (in %), ’/’ denotes that the result is not reported.

METHOD APY AWA2 CUB SUN

(SUNG ET AL., 2018) / 64.2 55.6 /
(XIAN ET AL., 2018) / / 57.3 60.8
(ZHU ET AL., 2018) 41.1 70.2 55.8 61.3
(LIU ET AL., 2018) 43.6 / 56.2 61.8
(LIU ET AL., 2019B) / 68.1 67.6 61.5
(CACHEUX ET AL., 2019) / 67.9 63.8 63.5
(LI ET AL., 2019) 43.1 70.6 58.8 61.7
(JIANG ET AL., 2019) 38.9 71.2 59.5 61.8

OURS 44.2 73.4 60.9 61.3

The attention module is implemented as a multilayer per-
ceptron (MLP) with one hidden layer followed by a ReLU
output layer. The outputs, ranging from 0 to 1, are inter-
preted as attention masks. The multilabel classifier is imple-
mented as a two layers fully connected (FC) neural network
followed by a sigmoid output function.

As we discussed in Section 4.1, each of the four datasets has
its own characteristics, which affects the discriminability
of image features and the transferability between seen and
unseen classes. Therefore, to better balance the discrimina-
tive property and the transferability, three hyperparameters
α, β, γ are set differently in four datasets.

4.3. Evaluations in ZSL Settings

In the ZSL setting, the predicted class of one input image
is the class with the highest classification score among all
unseen classes. We formulated it as:

Czsl (xi) = argmax
j

{oi,j} , j ∈ Y u (12)

We compare the proposed method against current state-of-
the-art approaches on four datasets. As suggested in (Xian

et al., 2019), average class accuracy (ACA) is adopted as
the evaluation metric. Table. 2 presents the result on four
datasets. Our approach achieves state-of-the-art results in
ZSL setting, but not the best among all datasets.

The seen classes are not involved in the comparison in ZSL
setting, making discriminative property decisive in recogni-
tion. Since we mainly focus on the knowledge transfer in the
GZSL setting, multilabel classification loss plays a major
role in guiding the training. In our work, the transferability
is gained by sacrificing the discriminative property, which
accounts for the relatively low accuracy in the ZSL setting.

4.4. Evaluation in GZSL Settings

The ZSL setting relies on the assumption that the test classes
consist of only unseen classes, which can be overly strict
and unrealistic. Hence we mainly optimize the performance
in the GZSL setting, where the test images come from both
seen and unseen classes. In the GZSL setting, the label
search space is expanded to all classes, which is formulated
as:

Cgzsl (xi) = argmax
j

{oi,j} , j ∈ Y s ∪ Y u (13)

Besides, the network is expected to recognize both seen and
unseen images. Therefore, a good network should achieve
high accuracy on both seen and unseen classes. Suppose that
the ACA for the test samples from unseen classes is ACAu
and ACAs is for the samples from seen classes. Their
Harmonic mean H is obtained by H = 2×ACAs×ACAu

ACAs+ACAu
,

which is taken as the evaluation metric of GZSL setting.

Table. 1 shows the ACAs, ACAu, H on four datasets. We
achieve the best performance in three of four datasets except
for the CUB dataset. CUB is a fine-grained dataset contain-
ing 200 different types of birds. To separate them apart from
each other, the network must have a strong discriminative
property, which is not the strength of our approach. We owe
the success in the GZSL setting to the excellent transferabil-
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Figure 2. Ablation study results on four datasets, in %. The left is the result in GZSL setting, while the left is in ZSL setting ’Full’ denotes
the complete approach proposed in this paper. ’Vanilla’ represents that loss function is a Cross-Entropy loss on seen classes without
knowledge transfer. ’Transfer only’ denotes that only transfer loss is available in the experiments.

ity, reflected by gaining high accuracy on unseen data while
maintaining the accuracy of seen data.

4.5. Ablation Study

4.5.1. LOSS FOR KNOWLEDGE TRANSFER

Viewing ZSL as a multilabel classification task and using
class similarities to facilitate knowledge transfer are the base
concepts of our approach. Without the loss for knowledge
transfer, the network is totally blind on any information of
unseen classes. To measure the importance of knowledge
transfer, we compare our results with the vanilla network,
where the knowledge transfer loss and pseudo unseen fea-
ture are removed. Figure. 2 shows the comparison.

In the GZSL setting, there is a sharp drop on H with the
absence of knowledge transfer, indicating that there is little
knowledge of unseen data learned from seen data. In the
ZSL setting, the ACA on unseen data is low but still com-
parative. Because the attributes of seen and unseen classes
have the same structure and only differ in values, the trans-
formation from attributes to attention masks learned in seen
classes can be easily transferred to unseen classes. Also
the classifier does not depend on the category of the input.
Therefore the vanilla network can achieve a relatively good
result in the ZSL setting. In the GZSL setting, due to the
different magnitudes of classification scores, many unseen
class instances are wrongly classified into seen classes by

the vanilla network, resulting in the bad performance.

4.5.2. LOSS FOR DISCRIMINATIVE PROPERTY

As we pointed out before, viewing ZSL as a multilabel
classification task will weaken the discriminative property.
The loss for discriminative property is designed to help
the classifier to distinguish different classes. Without the
discriminative loss, our model does not perform well in both
ZSL and GZSL settings. See more details in Table 2.

5. Conclusion
In this paper, we view GZSL as a multilabel classification
task and propose a simple network structure with an at-
tention module. We combine two losses to enhance the
transferability and discriminative property of our model on
both seen and unseen data. The loss for knowledge trans-
fer makes use of the similarities between seen and unseen
classes, which is obtained by semantic attribute, to teach
classifier to learn the information of unseen classes. The
loss for discriminative property fixes the damage on the dis-
criminative property caused by multilabel classification. Ex-
tensive experiments on four datasets verify the effectiveness
of the proposed approach, and demonstrate the advantages
over the state-of-the-art methods in GZSL setting.
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pp. 2009–2019, 2018.

Liu, Y., Guo, J., Cai, D., and He, X. Attribute attention
for semantic disambiguation in zero-shot learning. In
2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019, pp. 6697–6706. IEEE, 2019a. doi:
10.1109/ICCV.2019.00680.

Liu, Y., Guo, J., Cai, D., and He, X. Attribute attention
for semantic disambiguation in zero-shot learning. In
2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019, pp. 6697–6706. IEEE, 2019b. doi:
10.1109/ICCV.2019.00680.

Patterson, G., Xu, C., Su, H., and Hays, J. The SUN attribute
database: Beyond categories for deeper scene understand-
ing. Int. J. Comput. Vis., 108(1-2):59–81, 2014. doi:
10.1007/s11263-013-0695-z.

Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H. S.,
and Hospedales, T. M. Learning to compare: Relation
network for few-shot learning. In 2018 IEEE Conference



Better Transferability with Attribute Attention

on Computer Vision and Pattern Recognition, CVPR 2018,
Salt Lake City, UT, USA, June 18-22, 2018, pp. 1199–
1208. IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00131.

Verma, V. K., Arora, G., Mishra, A., and Rai, P. Gener-
alized zero-shot learning via synthesized examples. In
2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pp. 4281–4289. IEEE Computer Society,
2018. doi: 10.1109/CVPR.2018.00450.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The caltech-ucsd birds-200-2011 dataset. In Technical
Report CNS-TR-2011-001, 2011.

Xian, Y., Lorenz, T., Schiele, B., and Akata, Z. Feature
generating networks for zero-shot learning. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pp. 5542–5551. IEEE Computer Society, 2018. doi: 10.
1109/CVPR.2018.00581.

Xian, Y., Lampert, C. H., Schiele, B., and Akata, Z. Zero-
shot learning: A comprehensive evaluation of the good,
the bad and the ugly. IEEE Trans. Pattern Anal. Mach.
Intell., 41(9):2251–2265, 2019. doi: 10.1109/TPAMI.
2018.2857768.

Xie, G., Liu, L., Jin, X., Zhu, F., Zhang, Z., Qin, J., Yao,
Y., and Shao, L. Attentive region embedding network
for zero-shot learning. In IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pp. 9384–9393. Computer
Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.
2019.00961.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhut-
dinov, R., Zemel, R. S., and Bengio, Y. Show, attend and
tell: Neural image caption generation with visual atten-
tion. In Bach, F. R. and Blei, D. M. (eds.), Proceedings of
the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, volume 37 of
JMLR Workshop and Conference Proceedings, pp. 2048–
2057. JMLR.org, 2015.

Ye, M. and Guo, Y. Zero-shot classification with discrim-
inative semantic representation learning. In 2017 IEEE
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017,
pp. 5103–5111. IEEE Computer Society, 2017. doi:
10.1109/CVPR.2017.542.

Zhu, P., Wang, H., and Saligrama, V. Generalized zero-
shot recognition based on visually semantic embedding.
In IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2019, Long Beach, CA, USA, June 16-
20, 2019, pp. 2995–3003. Computer Vision Foundation /
IEEE, 2019. doi: 10.1109/CVPR.2019.00311.

Zhu, Y., Elhoseiny, M., Liu, B., Peng, X., and Elgam-
mal, A. A generative adversarial approach for zero-
shot learning from noisy texts. In 2018 IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018,
pp. 1004–1013. IEEE Computer Society, 2018. doi:
10.1109/CVPR.2018.00111.


