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Abstract
Human attention is a scarce resource in modern
computing. A multitude of microtasks vie for
user attention to crowdsource information, per-
form momentary assessments, personalize ser-
vices, and execute actions with a single touch.
A lot gets done when these tasks take up the in-
visible free moments of the day. However, an
interruption at an inappropriate time degrades pro-
ductivity and causes annoyance. Prior works have
exploited contextual cues and behavioral data to
identify interruptibility for microtasks with much
success. With Quick Question, we explore use
of reinforcement learning (RL) to schedule mi-
crotasks while minimizing user annoyance and
compare its performance with supervised learn-
ing. We model the problem as a Markov decision
process and use Advantage Actor Critic algorithm
to identify interruptible moments based on context
and history of user interactions. In our 5-week, 30-
participant study, we compare the proposed RL
algorithm against supervised learning methods.
While the mean number of responses between
both methods is commensurate, RL is more ef-
fective at avoiding dismissal of notifications and
improves user experience over time.

1. Introduction
Human computer interaction has evolved over the years
from desktop-only machines to wearables that interface at
a glance. Modern services in navigation, local business
discovery, crowdsourcing, participatory medicine (Lejbkow-
icz et al., 2010) depend upon such on-demand interaction,
where the user can access the services wherever they go.
Push notifications exploit this interaction to proactively seek
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user attention. Notifications are used to check mail, remind
users, nudge behavior, get feedback1, label datasets2, etc.
However, human attention is a limited resource (Lee et al.,
2015), and serving content irrelevant to the context leads to
annoyance, reduces productivity (Bailey & Konstan, 2006)
and diminishes engagement (Mehrotra et al., 2016b).

User interruptibility has been extensively studied in litera-
ture (Mehrotra & Musolesi, 2017). We categorize prior
works into two approaches - rule-based and data-based
policies. The rule-based policy relies on human behavior
analysis and identifies the moments that people are likely
available. Proposed policies include identifying breakpoints
between two tasks (Iqbal & Bailey, 2010) and using events
such as unlocking the phone as a heuristic (Vaish et al.,
2014). As the policy is fixed, it does not fit users who have
different preferences. Data-based approach leverages ma-
chine learning (Mehrotra et al., 2015; Pejovic & Musolesi,
2014; Pielot et al., 2015; Sarker et al., 2014). Prior works
used supervised learning that learns the non-linear relation-
ships between user context and availability using dataset
collected from an existing policy. Thus, the data-based
policy learns preferences for each user based on behavior.

While prior works use supervised learning (SL), we propose
using reinforcement learning (RL) to identify user interrupt-
ibility. We identify the following advantages of RL:
(i) Sequential decision process: SL assumes data samples
are independent from each other, whereas RL models each
sample a function of previous samples. RL can learn that
users will get annoyed if they get too many notifications.
(ii) Exploration: SL methods passively collect data based
on an existing policy, while RL algorithms actively explore
the problem space to learn policies that are robust.
(iii) Online learning: SL methods need a training dataset
to learn whereas RL is designed for online learning.

We focus on identifying interruptibility for micro-
tasks (Cheng et al., 2015), where we ask the user a “quick
question” that can be answered in a few seconds. Microtasks
have several use cases - crowdsourcing, personalization (Or-
ganisciak et al., 2014), labeling datasets (Good et al., 2014),

1Yelp review - https://www.yelp.com/
2Google Maps: Question About a Place - https://goo.gl/Jf9mTq
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ecological momentary assessment (Ponnada et al., 2017).
We seek to identify appropriate moments of the day to max-
imize microtask responses. We collect user context using
a smartphone and periodically send the information to the
cloud. Our web server uses SL and RL to determine whether
to send a microtask to user. User interactions over time are
used to train the models.

We conducted a 5-week, 30-participant user study to com-
pare SL and RL methods. Our results indicate the microtask
responses vary dramatically from person to person and both
data-based methods capture the individual preferences. We
penalized noti�cation dismissals with a negative reward for
RL, and it effectively learned to avoid dismissals. However,
the number of responses is higher for SL. Users indicated
they were available to answer quick questions when the RL
agent interrupted them 73% of the time compared to 54% for
SL. Users expressed improved experience over time with RL
and data indicates that RL adapts to changing preferences
within a few days.

The following are the contributions of this work:

• We implemented a cloud service that collects user con-
text from a smartphone app and determines interrupt-
ibility using both supervised learning and reinforce-
ment learning.

• We conducted a 5-week user study and recruited
30 participants to compare supervised-learning and
reinforcement-learning based microtask scheduling.

2. Related Work

2.1. Microtask

A microtasktypically refers to a simple task that can be
done within seconds (Cheng et al., 2015). The microtask
technique is widely used in crowdsourcing context: This
technique aims to lower the mental burden (Kittur et al.,
2008) and to improve response quality (Cheng et al., 2015).
Microtasks have also been applied to solve big, complex
tasks by partitioning them into multiple independent micro-
tasks (Kittur et al., 2011). A more sophisticated approach
is to automatically decompose a task based on domain on-
tology (Luz et al., 2014). Microtask techniques have been
successfully applied to high-complexity tasks such as article
writing (Kittur et al., 2011) and software development (La-
Toza et al., 2014). In this paper, we address an orthogonal
issue how to schedule microtasks to increase user responses.

2.2. Interruptibility Modeling

Machine-to-human interruptibility has been studied exten-
sively. One major interruption source from mobile and
wearable devices is push noti�cations; prior studies have
shown that scheduling noti�cations at an improper time

increases anxiety (Pielot et al., 2014) and reduces produc-
tivity (Bailey & Konstan, 2006). We broadly categorize
interruptibility modeling techniques into rule-based and
data-based. Rule-based techniques rely on prior knowl-
edge to estimate opportune moments of interacting with
people. For example, opportune moments can be identi�ed
based on mobile phone usage pattern such as after phones
are unlocked (Vaish et al., 2014), after phone calls or text
messages are �nished (Fischer et al., 2011), or when a user
reviewsan application (Banovic et al., 2014). Scheduling
microtasks at the task boundaries (i.e.breakpoints) can re-
duce mental effort (Adamczyk & Bailey, 2004), and this
technique has been applied to the desktop domain (Iqbal &
Bailey, 2010) and mobile platforms (Okoshi et al., 2015).
Goyal et al. (Goyal & Fussell, 2017) observes that it would
be the most effective to schedule a noti�cation when elec-
trodermal activity increases under a high-stress context. All
these techniques rely on a �xed policy and cannot be gener-
alized to all users or adapted for changes in user preference.

The data based approaches derive a classi�cation model
based on the user context, which is sensed by mobile or
wearable devices. Besides the common mobile phone sen-
sor data such as time, location, and motion activity, Sarker
et al. (2014) further consider stress level and social engage-
ment, and uses SVM to detect when a user is available.
InterruptMe (Pejovic & Musolesi, 2014) takes emotion as
an additional feature to infer if sending an instant mes-
sage is appropriate at the moment. Mehrotra et al. (2015)
leverage the content of noti�cations to infer how likely the
noti�cations will be responded. Pielot et al. (2015) deliver
news feeds when a user gets bored by training a random
forest classi�er. PrefMiner (Mehrotra et al., 2016a) mines
the noti�cation usage patterns and users can pick some of
those patterns to effectively �lter out undesired noti�cations.
Thyme (Aminikhanghahi et al., 2017) shares the same goal
with us to maximize user responses to microtasks. They
use SVM to identify interruptibility. Our work differs from
these works by applying reinforcement learning techniques
to address the interruptibility problem. As opposed to super-
vised learning, reinforcement learning is an online learning
process and it learns user preference from interacting with
users without a separate training phase.

2.3. Human-in-the-Loop Reinforcement Learning

Reinforcement learning (RL) has recently achieved state of
the art performance in domains such as games (Mnih et al.,
2015; Silver et al., 2017) and robotics (Andrychowicz et al.,
2020; Gu et al., 2017). These breakthroughs demonstrate
the capability of reinforcement learning. There are several
works that apply RL to help humans. Sentio (Elmalaki
et al., 2018) uses a variant of Q-learning to prompt forward
collision warnings in cars. Rafferty et al. (2016) develop a
tutor system based on Partially Observable Markov Decision
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Figure 1.Reinforcement learning setup.

Table 1.Features considered in Quick Question as user context.

Sensing modality Category Values
Time of the day Continuous 00:00 to 23:59
Day of the week Continuous Sunday (0) to Saturday (6)

Location Discrete Home, Work, Others

Motion Discrete Stationary, Walking, Running,
Biking, Driving

Ringtone mode Discrete Silent, Vibration, Normal
Screen mode Discrete On, Off

Noti�cation elapsed time� Continuous 0 to 120 (minutes)
� De�ned as how many minutes has elapsed since last noti�cation.

Process. Greenewald et al. (2017) exploit contextual bandit
to enhance a mobile health system. Silver et al. (2013) use
RL to maximize an objective of a company (e.g., revenue) by
performing actions to customers (e.g., offering a discount).
Our work aligns with these works and uses RL to optimize
noti�cation response performance.

3. Methods

In our partially observed Markov Decision Process setting,
there is anagentand anenvironmentwhose relationship is
depicted in Figure 1. At each step, the agent �rst makes an
observationto obtain a representation of the environment
calledstate. The observation is an approximate represen-
tation of state. The agent then takes anactionbased on its
policy. As a result of the action, the environment moves to
a new state and returns areward. The agent maximizes the
discounted sum of future rewards accumulated over succes-
sive steps. Quick Question uses the Advantage Actor-Critic
(A2C) (Mnih et al., 2016) as the RL algorithm. We describe
the algorithm details in Appendix A.

In our framework, theagentis ourQuick Questionsystem,
and theenvironmentis the smartphone user. The agent
observes theuser contextas a representation of userstate,
and takes anaction: either to send a noti�cation, or to
keep silent. The agent gets a positive reward when the
noti�cation is answered, and a negative reward when the
noti�cation is dismissed. A separate agent is trained for
each user.

Quick Question consists of a phone app and a web server.
The phone app senses user context data, and sends it to the
server every minute. The server determines if the user is
interruptible at the moment based on user context, and sends
the decision to the phone app. The phone app collects the

Figure 2.The microtask answering interface in the client app,
through a noti�cation (left) or in the app (right).

following contextual features: time of the day, day of the
week, location, motion status, screen status, ringer mode
and the elapsed time since last noti�cation (Table 1).

We use ecological momentary assessment (EMA) questions,
commonly used in human behavioral studies (Stone & Shiff-
man, 1994). All the questions are designed in the� -EMA
style (Ponnada et al., 2017) in multiple choice form and
can be answered within a few seconds. The questions can
be partitioned into: (i) Self-monitoring questions that track
user's mental and physical status such as stress and diet; (ii)
Participatory sensing questions collect the environmental
information, e.g., noise level at the current location; (iii)
The crowdsourcing questions, e.g., image ground truth la-
beling. We have nine question types listed in Table 2. Some
questions are factual, so we can verify user responses.

We embed the questions into the push noti�cation (Figure 2).
The noti�cation is displayedheads-upstyle with the possible
options right below. Alternatively, users can also answer the
questions by manually launching our app and selecting a
choice in the task view. A microtask times out after an hour,
or when a new microtask is scheduled.

Supervised Learning (SL) Agent converts the user con-
text into a feature vector and the user response as a classi-
�cation label. We normalize the sensing modalities which
output a continuous value (e.g., time of the day) into a num-
ber between 0 and 1, and use one-hot encoding to represent
sensors with discrete values. We create a positive label if
the noti�cation is answered, and a negative label otherwise.

There are two stages in SL: A training phase for data col-
lection and a testing phase. In the training phase, the agent
randomly decides whether to send a noti�cation every�
time units (e.g. every 30 minutes). The training phase
lasts for three weeks3. The agent trains a classi�er before
moving into the testing phase. We use Random Forest as
our supervised learning algorithm because it outperforms
Support Vector Machine and Neural Networks in our em-
pirical study. Our implementation uses the Scikit-Learn

3Prior work on training personal models using SL demon-
strates that the classi�cation accuracy converges in two weeks,
e.g., (Mehrotra et al., 2015; Pejovic & Musolesi, 2014)
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Table 2.Quick Question client app includes 9 types of microtasks. The examples of each microtask are provided below.
Number of With gold

Category Microtask Example question statement(options) questions standard
Self- Availability Are you available at the moment?(Yes, No) 1 No

monitoring Emotion Which describe your current emotion?(Stressed, Neutral, Relaxed) 4 No
Hydro Diary How long ago did you drink water?(Within 1 hour, Within 2 hours, longer) 1 No
Diet Trackera Do you regularly eat wholegrain cereals, with no added sugar?(Yes, No) 30 No

Planning Where are you going after you leave here?(Home, Work, Others) 3 (Yes)c

Participatory Noise level How loud is it at your location?(Loud, Moderate, Quiet) 1 No
sensing Crowdedness How many people are there around you?(0-5, 6-20,> 20) 1 No
Crowd- Image labelingb What is the object in the image?(Bear, Bird, Butter�y) 1,100 Yes
sourcing Arithmetic What is answer of23 � 33? (259, 759, 1259) 1,000 Yes

a Source: How healthy is your diet Questionnaire. https://tinyurl.com/y9hssxz7
b Source: ImageNet dataset (Deng et al., 2009).
c This question is not considered for analyzing user response accuracy due to potential sensor error.

library (Pedregosa et al., 2011).

Reinforcement Learning (RL) Agent uses the same fea-
ture representation as SL to encode user context. RL maps
the user response to different reward values: A positive re-
ward that decays exponentially based on response time to
encourage scheduling a microtask that can get an immedi-
ate response; a strong negative reward if a user dismisses
the noti�cation to avoid negative user experience; a small
penalty if the user ignores the noti�cation (i.e., does not
answer it within one hour because the user overlooks it or
forgets to reply). We de�ne the reward function as:

reward =

8
><

>:

1 � t0:9; if answered,
� 0:1; if ignored,
� 5; if dismissed

wheret is the noti�cation response time (i.e., the time differ-
ence between the prompt and when the answer is received).

Our RL agent implementation is built upon Coach (Caspi
et al., 2017), a reinforcement learning library. Our RL al-
gorithm is selected based on an empirical study with simu-
lated users. We tested neural-network based RL algorithms
including Deep Q-learning Network (DQN) (Mnih et al.,
2015), Advantage Actor-Critic (A2C) (Mnih et al., 2016),
and Proximal Policy Optimization (PPO) (Schulman et al.,
2017). A2C achieves the best performance among these
algorithms and converges in the shortest time. Hence, we
choose A2C for the real user study. We employ a fully-
connected neural network with one hidden layer (256 units).
We set the discount factor = 0 :99. The algorithm uses
categorical exploration strategy which performs a stochastic
action based on the probability distribution of actions. We
include system implementation details in Appendix B. We
list the hyperparameters used in Appendix C.

4. User Study

We were guided by the following inquiries in our user study:

• What was the relativenoti�cation response amount,

rate, and accuracy(for noti�cations with correct an-
swers) collected from the reinforcement learning (RL)
method and how is it compared to the supervised learn-
ing (SL) method?

• How did theuser experienceresulting from the RL
method compare to the SL method?

To make a meaningful comparison between SL and RL, we
maintain consistency in confounding factors, such as the
user study procedure, the quali�cation criteria for partici-
pants, and the analysis method on the collected noti�cations.

4.1. Participants

This study was approved by UCLA IRB (IRB#18-000504).
In total, we recruited 30 participants (19 females, 11 males)
from a major research university. Among these participants,
28 were students and 2 were staff. Ages ranged from 17
to 29 (mean=21.1). The inclusion criteria of our study are
active Android users with OS version 7 or higher. Par-
ticipant phone models included Samsung (N=11), Google
Pixel/Nexus (N=8), OnePlus (N=6), Sony (N=2), LG (N=2),
and HTC (N=1). Additionally, Android OS 7, 8, 9 accounted
for 7, 18, and 5 participants respectively. The participants
received gratuity of$50 for each completed week, and an
additional $50 if they complete the entire study.

4.2. Procedure

15 participants were part of the RL group, and 15 were
in the SL group. The procedure consists of two phases:
(1) a screening phase to select quali�ed participants, and
(2) an experimental phase. Participants were recruited via
university mailing lists and snowball sampling.

In the screening phase, interested candidates completed a
questionnaire regarding the phone model they were using, its
OS version, and whether they would have network reception
during the entire study even if WiFi is not available. After
they passed the screening phase, candidates were asked to
�ll out a pre-study questionnaire with their personal informa-
tion. Finally, quali�ed participants were asked to attend an
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orientation on how to use the Quick Question app. During
the orientation, we emphasized that (1) our study app will
send no more than 150 noti�cations4 in each day between
10am to 10pm, and each question can be answered within a
few seconds, and (2) participants were asked to not change
the way they respond to noti�cations, hence, answering all
questions is not necessary. We then helped the participants
to install our app and complete the location con�guration
(i.e., user's home and work location) for the classi�er.

In the 5 week experimental phase, participants went about
their everyday activities with their app-installed phone. We
sent a weekly survey at the end of each week to gauge user
perception towards the noti�cation schedule on a 1-5 point
Likert scale. At the end of 5 weeks, we conducted a post-
study survey consisting of open-ended questions to gather
participant feedback on the overall user experience.

5. Evaluation

In total, we collected 19,223 hours of data. Among these
data, our system sent out 66,300 noti�cations. 20,950
(31.5%) noti�cations were answered, 2,008 (3.0%) were
dismissed, and 43,342 (65.5%) were ignored. We compare
the performance of RL and SL from different dimensions.
In SL, we report the results in the training phase (SL-train)
and the testing phase (SL-test) separately.

5.1. Task Response

Table 3 compares the task response performance. We list
four metrics in the table: the number of noti�cations an-
swered in a week, the number of noti�cations dismissed in
a week, the ratio of answered noti�cations, and the ratio of
dismissed noti�cations.

RL gets more microtasks answered, but SL achieves bet-
ter answer rate. On average, RL is able to get 153.6 micro-
tasks answered per week, which is slightly higher than SL
with 130.9 microtasks per week. However when we break
it down, RL only outperforms SL-train (108.5/week) but
is slightly lower than SL-test (164.6/week). SL achieves a
higher answer rate (48% in SL-train and 34% in SL-test)
than RL (27%). Therefore, SL is effective in learning in-
terruptibility as indicated by prior studies. However, the
random noti�cation schedule in the training phase underes-
timates user responsiveness and re-training the SL model
more frequently could have led to improved results.

The reward function of RL incentivizes answering micro-
tasks and discourages dismissals with a heavy penalty. How-
ever, the penalty for an ignored microtask is low. In addition,

4To test the limit of how many noti�cations one can handle, we
choose a number twice larger than the number of daily noti�cations
(53.8) (Pielot et al., 2018).

Figure 3.Weekly rating of both algorithms.

we only show one micro-task at a time, the prior micro-task
noti�cations are removed before sending a new one. Given
this design, RL agent learned to send lots of microtasks
because users ignored most noti�cations but dismissed very
few of them. Hence, RL agent gets a lot of questions an-
swered, but its response rate is low.

RL can effectively suppress dismissed noti�cation rate.
RL keeps the task dismiss rate low (3%). In contrast, both
SL-train and SL-test exhibit higher dismiss rate (6%). Note
that RL agent's dismiss rate is low despite the fact that it
sends larger number of noti�cations. RL has been incen-
tivized to avoid dismisses with a sequential decision making
process, whereas the loss function in vanilla SL algorithms
pick actions independently based on probability distribution
of past data and do not learn the impact of their actions on
the user state. This makes decisions made by SL-test sticky,
and increases the noti�cation volume of SL-test 2.1x more
than SL-train. One can potentially improve SL performance
using recurrent neural models.

Rewards have high variance across users.RL receives
higher weekly rewards (43:2� 136:6) than SL (26:4� 274:2),
but reward pattern vary widely across users. Hence, we
make no statistically signi�cant conclusion w.r.t rewards.

5.2. User Experience of Interruptibility

User experience in RL is initially worse, but improves
over time. Figure 3 shows the weekly survey result in
which we ask participants to rate the appropriateness of the
timing of the prompted tasks with a 5 point Likert scale.
The result shows that SL starts with a high rating (4:0 � 0:9
in SL-train), and the rating remains relatively �at in the
testing phase (4:0 � 1:0 in SL-test). RL starts with a low
rating (3:6 � 0:9 in the �rst two weeks). This is likely due
to the fact that RL sends more noti�cations to explore the
problem space, and this causes disturbance. The rating in
RL improves over weeks (4:0 � 0:8 in the5th week).

5.3. Microtask Response Analysis

RL can better identify available moments. Pielot et al.
(2017) identi�ed that users respond to microtasks even when
their perception is that they are not available. Our result
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Table 3.The comparison of the response performance of short questions between RL and SL algorithms. There are 15 participants in each
group

Reinforcement learning algorithm Supervised learning algorithm
# answered # dismissed Answer Dismiss # answered # dismissed Answer Dismiss
noti�cations noti�cation rate rate noti�cations noti�cation rate rate

Week 1 214.9 11.8 0.42 0.03 Week 1 88.6 5.5 0.55 0.04
Week 2 182.2 25.4 0.28 0.04 Week 2 108.3 12.0 0.45 0.06
Week 3 138.6 22.3 0.22 0.06 Week 3 128.6 13.1 0.43 0.05

Avg (SL-train) 108.5 10.2 0.48 0.05

Week 4 120.1 9.0 0.21 0.02 Week 4 155.7 19.2 0.36 0.04
Week 5 112.2 8.1 0.20 0.02 Week 5 173.4 24.6 0.32 0.07

Avg (RL) 153.6 15.3 0.27 0.03 Avg (SL-test) 164.6 21.9 0.34 0.06

(a) The RL agent takes one week to converge. (b) The RL agent can quickly adapt to user preference change.

Figure 4.Probability of sending a microtask across time by the reinforcement learning (RL) agent for two different users.

(a) (b)

Figure 5.CDF of time intervals for (a) answering and (b) dismiss-
ing noti�cations.

shows that 73% of the responses from RL participants are
yeswhich indicate the users were available when they an-
swered the questions. However, only 54% of the responses
in SL indicates users were available, suggesting that RL
does a better job of �nding interruptible moments.

People dismiss noti�cations much faster in SL-test.An-
other measure of interruptibility can be to observe how long
users take to respond to microtasks. Figure 5a displays the
time intervals that users take to answer a noti�cation since
prompted. The result shows that at least 58% of the micro-
tasks are answered within one minute in both algorithms.
Figure 5b shows that 34%, 24%, and 65% of the noti�ca-
tions are instantly dismissed in RL, SL-train, and SL-test
(i.e., within 5 seconds) right after they are scheduled.

High response accuracy.We de�neresponse accuracyas
number of correctly answered microtasks over the number
of factual tasks (Table 2). Both algorithms achieve over 90%

of response accuracy in all the 5 weeks, validating that the
participants were engaged throughout the study.

5.4. Learning Algorithm Analysis

A2C converges in a week.To understand when the RL
agent starts to learn something meaningful, we pick one
user as an example and plot the con�dence scores of all
the interruptibility queries in Figure 4a. Thecon�dence
is de�ned as the likelihood for the learning algorithm to
send a microtask, which is part of the output of A2C. We
provide daily reward on the bottom for comparison. Since
the agent receives bigger rewards for the �rst 7 days, the
agent gets more con�dent in prompting noti�cations. As
the user behavior changes around10th day, the daily reward
and the con�dence drops. It can be explained that as time
progresses, the agent adapts to the changing user behavior.

RL can adapt to user preference change and capture the
weekly pattern. Figure 4b presents another user who ac-
tively dismissed noti�cations in the middle of the study. The
amount of dismissed noti�cations signi�cantly increased
after day 20. The con�dence drops when RL starts receiving
negative reward which in turn suppresses the microtasks to
this user. However, the con�dence raises on day 28 and
day 35 which are Sundays. We ask the user about this pat-
tern after the study and they con�rmed that they were only
available during weekends.

Users can be categorized into four coherent groups.No-
ti�cation response behavior varied widely between users.
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(a) Overall high con�dence in RL (6 cases) (e) Overall high con�dence in SL (4 cases)

(b) Overall low con�dence in RL (4 cases) (f) Overall low con�dence in SL (4 cases)

(c) Separated con�dence in RL (3 cases) (g) Separated con�dence in SL (3 case)

(d) Diffused con�dence in RL (2 cases) (h) Diffused con�dence in SL (4 cases)

Figure 6.Examples of con�dence change in RL (left column) and SL (right column). Four common patterns are found in both algorithms.
For SL, we provide the con�dence distribution on the side to assist visualization.

We analyzed the learned behaviors of both RL and SL agents
for each user. For RL, we use the probability of sending a
noti�cation as given by the policy network. For SL, we use
the Random Forest con�dence, which is the number of votes
it gets for sending a noti�cation from the tree ensemble.

Figure 6 depicts a typical user from the four groups we
identi�ed. The �rst group follows a high-con�dence pattern
because of the high answer rate, and the second follows a
low-con�dence pattern as users dismiss or ignore majority
of the microtasks. The third pattern shows the points are
vertically separated into two clouds. We observed that both
RL and SL increase the con�dence of sending a microtask
when screen is turned on for these users, a manual rule used
in prior work (Vaish et al., 2014). The �nal pattern shows the
con�dence varies signi�cantly within a day. Further analysis
revealed several factors impact the decision. For example,
we found that the agent becomes more con�dent when either
the screen is on or ringtone mode is adjusted to normal in
Figure 6d, and the con�dence increases when screen is
on or non-stationary motion is detected in Figure 6h. The
combination of multiple variables cause different con�dence
levels. We checked the learned patterns with each of the
users response patterns and they aligned well.

We analyzed the rewards received in the testing phase per
group. For the high-con�dence group, RL receives165:7 �

144:3 (N=6) weekly rewards, and SL receives� 90:9� 404:9
(N=4). For low-con�dence group, RL receives� 45:2� 24:6
(N=4) and SL receives� 99:1 � 75:6 (N=4). While RL
generally receives higher rewards in these groups, the results
are not statistically signi�cant due to high variance.

5.5. System Performance

Client App Battery Impact The battery consumption
was measured on a new Pixel 2 phone running Android
8.0 with a sim card. We factory reset the phone to minimize
measurement noise. We measured the battery consumption
with and without our app installed separately. With a fully
charged phone, our results show that the battery level drops
to 84% after 12 hours without our app installed, and to 77%
when our app is running in the background. Hence, our app
increases battery use by 7% during a day.

Server Request Handling Our server is hosted on a desk-
top with a 4-core Intel CPU @ 3.5 GHz and 32 GB DDR3
memory. We benchmarked the overhead of both algorithms
when processing an interruptibility query. Supervised learn-
ing consumes 163 MB and takes1:27 � 0:07 seconds to
complete a query, and RL consumes 243 MB and takes
2:28� 0:16 seconds. The major cause of the time overhead
is for loading and initializing the agents in both algorithms.
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Our results suggest RL introduces higher overhead.

5.6. Post-Study Survey

We collected 26 effective post-study surveys, 14 from the
RL group and 12 from the SL group. 13 participants in RL
group and 11 in SL observed a difference in noti�cation
patterns during the 5-week study. These users were subse-
quently asked to rate the change of the task schedule with a
5-point Likert scale where 1 is noticeably worse and 5 is no-
ticeably better. The rating is4:23� 0:58and3:45� 1:44 in
RL and SL, respectively, implying that RL learns the oppor-
tune moment to engage as per user perception. Participants
in RL express“started getting more/fewer noti�cations dur-
ing speci�c times of the day”. Participants mentioned re-
ceiving less undesired noti�cations during work (N=3)5,
studying (N=1), in the morning and evening (N=1), or re-
ceiving more noti�cations at opportune times such as when
they are “sitting down” (N=1). A few SL participants ob-
served a polarizing change when transitioning to the testing
phase: one participant received signi�cantly more tasks,
while two participants received signi�cantly less amount of
tasks (N=2). Two users indicated the app gave more noti�-
cations when they were studying (undesirable, N=2) while
one user experienced less noti�cations when at work (N=1).

RL and SL users expressed different concerns when asked
why certain noti�cations were disruptive. RL participants
indicated that the tasks were sent out far too often than they
expected (N=6). Some reported that the app is unaware
when they are engaged with other phone activities such as
watching videos or playing games (N=5). On the other hand,
the major concern of SL participants is that microtasks were
delivered at inopportune moments in which they could not
answer (e.g., driving, at work) (N=5). The frequency of
noti�cations also heightens the disturbance (N=4).

In both algorithms, prompting at an inopportune moment
is a major reason for dismissed noti�cations (N=8). Partici-
pants sometimes dismissed noti�cations when they found
the microtasks to be too challenging (N=4). 16 users re-
ported arithmetic questions to be more dif�cult than other
questions (N=16). However, one user chose to randomly
select answers instead of dismissing noti�cations (N=1).

6. Discussion and Future Work

The goal of an RL agent is to maximize the long term re-
ward, and the reward function is designed to achieve the
desired outcome. In Quick Question, we investigate a sim-
ple objective which optimizes for the number of completed
microtasks while minimizing the number of dismissed no-
ti�cations to reduce disturbance. However, it is clear from
our study that designing the reward function is non-trivial

5We use N=? to denote number of people.

as the agent can have unintended behavior. In our case, the
agent decided to send many noti�cations during the day as
it was not penalized enough for ignored noti�cations.

We can improve the reward function as per application re-
quirement. For example, the reward function can be aug-
mented to discourage when a high-priority noti�cation is
missed. Also, our reward function can potentially incorpo-
rate the response rate and the response accuracy. In Quick
Question, we hand picked the reward ratio of answering and
dismissing a noti�cation to be 1 to 5, but a better reward
mechanism can be explored based on behavioral models, or
automatically optimized by Inverse Reinforcement Learn-
ing algorithms (Banovic et al., 2017). Designing a reward
function that can generalize to all types of noti�cations is
challenging, and a promising direction for future work.

Although we keep the microtasks as homogeneous as possi-
ble in our study (i.e., length and task style), some questions
do cause bias for certain users. For example, one user did
not want to answer the diet questions because they made
him feel self conscious. This bias, however, can be explic-
itly modeled in RL by augmenting the action space, i.e., the
agent can decide which question to prompt based on user
preference (Greenewald et al., 2017). Another direction to
be explored in the future is to consider a different workload
based on the intensity of interruptibility (Yuan et al., 2017).
For example, a system can prompt more than one microtasks
in a row (Cai et al., 2016) when a user is more available.

7. Conclusion

We presented our system Quick Question to understand the
trade-off between supervised learning (SL) and reinforce-
ment learning (RL) for identifying user interruptibility for
microtasks. We conducted a 5-week user study with 30
participants to collect user interactions with noti�cations.
Our results show that both SL and RL learn data driven
patterns and identify interruptible moments manually dis-
covered in prior work. RL and SL are commensurate in
terms of overall performance as measured by rewards, and
it is dif�cult to draw statistically signi�cant conclusions
due to high variance in user behavior. RL is more effective
in reducing dismissed noti�cations as incentivized by its
reward function. However, SL achieves a higher response
rate, indicating that reward design plays an important role
in guiding RL behavior. RL can smoothly adapt to changing
user preferences and lower the burden for users to handle
microtasks. Our user perception survey indicates that RL
achieves better user experience and more accurately identi-
�es interruptible moments. We open source our code and
dataset to encourage future work in this area6.

6https://github.com/nesl/
EngagementService
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Appendix

A. A2C Algorithm

The policy� indicates which actionat should be performed
given the current observationot . Let the discounted sum of
future rewardsRt =

P 1
k=0  k r t + k wherer i is the reward

received at thei th step and is the discount factor between
0 to 1. The state-value functionV � (o) is the expected value
of discounted future rewards from a given observationo
following a policy� :

V � (o) = E[Rt jot = o]: (1)

Similarly, the action-value function is de�ned as the ex-
pected value of taking an actiona at an observationo fol-
lowing a policy� :

Q� (o; a) = E[Rt jot = o; at = a]: (2)

Then, the advantage function which is de�ned as

A � (o; a) = Q� (o; a) � V � (o) (3)

indicates how advantageous it is to take an action at a given
state compared to other actions.

Quick Question uses the Advantage Actor-Critic
(A2C) (Mnih et al., 2016) as the RL algorithm. A2C
uses two neural networks - an actor network and a
critic network. The actor network generates actions by
representing the policy� (ajo; � ) with parameters� , while
the critic network learns the value function to assess
the bene�t of an action. The actor network outputs the
probability distribution of actions (i.e., con�dence), and
critic network gives the feedback over the chosen action. In
policy gradients methods,� is updated in the direction of
� � log � (at jot ; � )Rt whereRt is the accumulated reward
after a policy run. To reduce the variance of updates, an
unbiased baseline is subtracted from the accumulated
reward as� � log � (at jot ; � )(Rt � b(t)) . In A2C, the
baseline is the state-value function:b(t) = V � (o). Hence,
the estimate of the value function as given by the critic
network is used in computing the gradient.

V � (ot ) = E[r t ] +  � V � (ot +1 ) (4)

Equation (4) is a form of Bellman's equation and can be di-
rectly solved by dynamic programming. The drawback with
this approach is that the state valueV (o) can be computed
only when the observationo is visited, hence limits the size
of the state space.

In practice, we usually maintain one big network by merging
the �rst few layers of both networks due to idential structure.
For more details, please refers to the original paper (Mnih
et al., 2016).

B. System Design and Implementation

Figure??shows our server-client architecture with: a phone
client app and a web server. Our phone app senses user con-
text data and sends it to the server every minute. Our server
determines if the user is interruptible at the moment based
on the current user context along with the past user daily
routing and response history, and returns the binary decision
back to the client app, indicatingto prompt a microtask(i.e.,
a short question) orto keep silent. Once the app displays
the microtask, the app tracks how the user responds to the
question and sends the response by piggybacking on the
next request.

B.1. Client App

The inclusion criteria of our study are that the participant is
an active Android user and has the OS version 7 or higher
installed. Android supports heads-up style noti�cations
starting from Android 7, which is also the mainstream noti-
�cation style in iOS.

Our app is composed of three components: Asensing mod-
ule to monitor user context, amicrotask poolto store a list
of short questions, and auser interface module.

Sensing Module It collects time of the day, day of the
week, location, motion status, screen status, ringer mode
and the elapsed time since last prompt (see Table 1). The
challenge is to perform sensing continuously during the
study period (i.e., 12 hours per day) while not drawing
too much energy. To minimize battery impact, we use An-
droid's adopt two strategies to save energy. First, we make
the sensing process event-driven and useAlarmManager
to schedule sensing tasks. This avoids unnecessary CPU
idle time and keeps the CPU in sleep mode when possible.
Second, we exploit useActivityRecognition API
for motion activities and theGeofencing API for loca-
tion instead of collecting raw data. Both APIs are powered
by Google Play Service which aims to optimize the sensing
pipelines in the hardware- and operating-system level.

For motion, we collect activity labels (e.g., walking) instead
of raw data. Similarly, for location, we ask participants to
declare two geofences indicating their home and workplaces.
If a user is neither at home nor at work, the location label
is marked asothers. Since the app performs sensing con-
tinuously through 10am to 10pm, we exploit Google Play
Service to collect motion activity and geofencing informa-
tion which is optimized in the OS level to reduce the battery
impact.

Microtask Pool Once the server receives the user context,
the server informs the client app whether the user is avail-
able to complete amicrotask. A microtask can be anything
that requires user input. In our system, we focus on We




